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Abstract. In recent years, Al based on deep learning has achieved
tremendous success in specialized tasks such as speech recognition,
machine translation, and the detection of tumours in medical
images. Despite these successes there are also some clear signs of
the limitations of the current state-of-the-art in Al. For example,
biases in Al-enabled face recognition and predictive policing have
shown that prejudice in Al systems is a real problem that must be
solved. In this position paper, we argue that current Al needs to be
enhanced along four dimensions to become more trustworthy:
environment, purpose, collaboration, and governance. Hybrid Al
offers the potential for advancements along these four dimensions
by combining two different paradigms in Al: knowledge-based
reasoning and optimization, and data-driven machine learning.
Some hybrid Al design patterns show how these paradigms can be
combined to harness the advantages of both approaches while at
the same time overcoming their limitations. We introduce two
classes of systems that are enabled by hybrid Al: autonomous
systems and human-machine teams. Several examples show how
hybrid Al can be employed to make these system classes more
trustworthy.

1 INTRODUCTION

Recent breakthroughs in Artificial Intelligence (Al) based on deep
learning have allowed machines to perform at the same level as (or
even surpass) humans in specialized tasks such as image
classification, speech recognition, and machine translation. These
breakthroughs are enabled by the tremendous growth in
computational power, the availability of large annotated datasets,
and new efficient machine learning algorithms. Most of the recent
successes in Al can be attributed to supervised deep learning which
is a machine learning approach that uses large labelled training sets
and a gradient-based backpropagation algorithm to adapt millions
of parameters in a layered deep neural network. The availability of
big data and enormous computing power provided by modern
graphical processing units are the main contributors to this success.

Despite these successes there are also some disturbing signs of
undesirable behaviour of Al. For example, unwanted biases in
algorithms for face recognition and fraud detection have shown
that prejudice and bias in Al systems is a real problem that needs to
be solved [1][2]. Furthermore, accidents with self-driving cars
indicate that Al cannot yet be trusted to operate autonomously in
safety-critical applications [3].
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In contrast with the currently successful deep learning approach,
knowledge-based Al uses symbolic knowledge representation,
logic reasoning and optimization which offers the benefit of
explainability and predictability but lacks the adaptability and
effective handling of uncertainty that modern machine learning
offers. Hybrid Al is a recent trend in Al that addresses the current
limitations in Al by combining the best of knowledge-based
methods and data-driven machine learning.

The purpose of this position paper is to argue that Al needs to
be enhanced along four dimensions to become more trustworthy
and that hybrid Al can enable these enhancements. The paper is
organised as follows. Section 2 describes the four dimensions
environment, purpose, collaboration, and governance. Section 3
introduces hybrid Al design patterns that describe different ways of
combining knowledge-based methods and machine learning.
Section 4 describes how two distinct Al system classes can be
made more trustworthy by applying hybrid Al. Finally, section 5
gives conclusions.
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Figure 1. Improvements of Al along four dimensions.

2 FOUR DIMENSIONS OF Al

For Al to become more effective and accepted in society, there is a
need for future Al to improve from the current state-of-the art.
Figure 1 shows these needs along four dimensions: (i) environment
(if) purpose, (iii) collaboration, and (iv) governance. For the near
future we foresee a need for Al to evolve from operations in a
controlled environment to operations in an open world, from
special purpose tasks to more general purpose problem solving,
from a stand-alone system to a team of humans and Al, and from
applications where the governance of the Al can be permissive to



applications where governance needs to be strict with respect to
compliance with laws, ethical norms, and societal values. The Al
challenges that emerge from these needs are discussed in more
detail in the next sections.

2.1 Environment

When Al was introduced in the second half of the 20" century, it
demonstrated considerable success in solving problems that were
previously unattainable by computers. This first generation of Al
used knowledge representations such as heuristics, rules and
ontologies, and deductive reasoning to solve problems such as
search and planning. However, it soon became clear that
knowledge-based Al could only solve well-defined problems in
carefully controlled environments where uncertainty is minimal
and explicit knowledge instead of intuition mostly defines the
solution to the problem.

Machine learning techniques such as support vector machines
and deep neural networks use large labelled data sets to solve
problems. Machine learning does not depend on explicit
knowledge representations thereby reducing the need for scarce
domain experts and broadening the range of environments in which
it can operate. Uncertainty in the environment can also be handled
better by machine learning than knowledge-based reasoning
methods because it exploits the diversity and fluctuations in the
training data to achieve statistically impressive results even when
numerous potentially correlated parameters are involved. There are
however still significant problems when using machine learning in
open environments: e.g. environments with rare but important
events, adverse conditions, and unforeseen situations. In these
environments there is often few data or no data at all available for
training. This scarcity of labelled training data is a big challenge
for machine learning which restricts the applications in which Al
can be deployed effectively and safely. For example, the danger of
relying on machine learning in safety-critical applications such as
an Advanced Driver Assist System (ADAS) is vividly illustrated
by a recent experiment where a digit on a traffic sign was slightly
modified [4]. The interpretation of the image of the traffic sign by
the ADAS was 85 mph instead of 35 mph. Clearly, such an error
could cause major problems and lethal accidents.

In summary, Al faces challenges in an open environment in the
identification and characterization of unforeseen situations, a lack
of training data and acting effectively and safely in unknown
situations. Potential solutions for these challenges include
compositional reasoning, simulation models to generate training
data for rare events, and context awareness to preclude undesirable
behaviour of Al-enabled systems [5].

2.2 Purpose

Al using deep neural networks can currently outperform humans
on specialized tasks such as the detection of tumours in medical
images after being extensively trained on large labelled image sets
[6]. However, if the purpose of the task changes slightly, for
example from localisation of a tumour to segmentation of a
medical image, the loss function that encodes the purpose of the
task and the neural network architecture must be redesigned, and
the network must be retrained again. Approaches such as transfer
learning can address this problem by reusing parts of a network
that has been trained on large publicly available databases such as
ImageNet. However, there are often significant differences

between images used in different domains. For example, in medical
images variations in local textures are used to detect tumours while
in natural image datasets there is generally a global subject present
[7]. Significant progress has been achieved with transfer learning
using homogeneous data sets in decision support systems.
Considerably more challenging are applications that involve
heterogeneous data sources and planning and control of effectors
such as in mobile robots [8].

Instead of designing a specific loss function for each task and
tuning task-specific parameters until the machine learning
algorithm performs satisfactorily, it would be useful to have a more
general-purpose approach in which the problem to be solved can be
described at a higher abstraction level. The challenge for general-
purpose Al is to offer a user the flexibility to conduct a variety of
tasks according to user preferences, ethics, and societal values,
while avoiding a detailed specification by the user of how the Al
should carry out these tasks [9]. To decide which course of action
is best in the current situation, the Al needs a world model and
domain knowledge to assess the impact of different actions [10].

2.3 Collaboration

Current Al mainly interacts in a pre-determined way with humans
(and other systems) in their environment and acts like a smart
stand-alone tool that is employed to solve specific problems. This
predetermined interaction and fixed task allocation between
humans and a smart Al tool helps to manage expectations and
assure safety, but it also limits the effectiveness of combined
human intelligence and artificial intelligence in complex and
dynamic environments. Effective collaboration between humans
and Al demands mutual understanding of each other’s abilities and
shortcomings. Currently, a proper level of mutual understanding
and anticipation is lacking. Consequently, there is a need for Al
that learns (1) to understand and interpret human abilities [11], and
(2) to self-improving forms of collaboration [12].

Another aspect that limits the use of machine learning in
collaborative systems is the black box nature of deep neural
networks. Even for machine learning experts it is hard to
understand how a deep neural network arrives at its conclusions.
An explanation to an expert or user of how and why the Al arrived
at certain conclusions is a challenge that has been widely
recognized [13]. Such an explanation capability is supported by
symbolic communication in terms of domain knowledge that
humans understand [14].

24 Governance

Machine learning software behaves differently from conventional
software in the sense that decisions are based on training data and
not on rules and control flows engineered by humans. This has the
advantage that less effort is needed to develop the software.
Furthermore, novel solutions may be found to problems that have
eluded scientists and software engineers. However, the
disadvantage is that there is less (or no) awareness of unwanted
biases in the data set. For some applications such as machine
translation and recommender systems, the impact of biases is
limited, and governance is permissive because humans can correct
or compensate for mistakes. However, in many Al applications a
stricter governance is needed because the tolerance for errors and
biased decisions is low. A well-known example of biased decision



making is Al-based photo-categorization software that labels
images of people with a dark skin as gorillas [16].

Fairness, i.e. decisions that are free of unwanted biases, is one
of the pillars of the responsible use of Al. Fairness is sometimes in
conflict with the accuracy of decisions that is also desired for a
responsible use of Al. Most deep learning algorithms can achieve a
high accuracy only by having access to large data sets. Individuals
and organisations sometimes contribute willingly to large data sets
to reap the benefits of useful machine learning applications. In case
of sensitive data, however, most individuals and organisations are
reluctant to disclose these data. This implies that they also do not
benefit from the use of Al. A possible solution for this dilemma is
multiparty computation that enable machine learning methods to
learn from confidential data without disclosure of the data [17].
The final element of responsible use of Al addressed in this paper
is that decision making also needs to be transparent. A lack of
transparency leads to distrust and potentially to rejection of Al in
society. However, transparency can also be at odds with the
confidential treatment of data on which decisions are based.
Fairness, Accuracy, Confidentiality and Transparency (FACT) are
four objectives for the responsible use of Al that need to be
addressed [14]. The challenge for Al is to conduct a trade-off
between these conflicting objectives that depends on the context.

3 HYBRID Al DESIGN PATTERNS

The limitations of current data-driven machine learning methods
have been identified by leading Al researchers and a combination
with knowledge-based reasoning and optimization has been
proposed as a potential solution to these limitations [18][19]
[20][21][22]. There are, however, many ways to combine these
approaches. We have adopted the boxology proposed by van
Harmelen and ten Teije to categorise different hybrid Al methods
[23]. The hybrid Al boxology use design patterns with two
different elements: ovals for algorithms and boxes for their input
and output. The oval algorithms represent knowledge-based
methods (KR) or data-driven machine learning methods (ML). The
input and output represented by rectangles concern knowledge or
data. Some examples of hybrid Al design patterns that enable
responsible human-machine teaming and safe autonomous systems
are presented in this section. A more detailed discussion on hybrid
Al use cases is provided in section 4.
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Figure 2. Hybrid Al design pattern using knowledge as a prior for
machine learning.

Figure 2 illustrates a first example of a hybrid Al design pattern
in which knowledge is used as prior information for machine
learning. An example of a method that uses this pattern is a Logic
Tensor Network which integrates fuzzy logic with a neural network
to allow efficient learning from noisy data in the presence of
logical constraints [24]. Sections 4.1.2 and 4.2.1 discuss the
potential of this design pattern for novelty detection and bias
mitigation.

knowledge

data @ data

Figure 3. Hybrid Al design pattern using a knowledge-based
model to generate training data for a machine learning method.

Figure 3 shows a hybrid Al design pattern where a knowledge-
based simulation model is used to generate training data for a
machine learning method. This method is useful in applications
such as defence and security where representative and balanced
training data sets are expensive or difficult to acquire [25].

A third example of a hybrid Al design pattern is shown in
Figure 4 where a knowledge-based model is used to predict data
that is measured by a system and the prediction errors are used to
update the model. This pattern is useful for anomaly detection and
competence assessment by autonomous systems, see section 4.1.1.
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Figure 4. Hybrid Al design pattern using a model to predict
measured data and prediction errors are used to update the model.

4 Al SYSTEM CLASSES

To illustrate the potential of hybrid Al for trustworthy intelligent
systems, we propose to differentiate two Al system classes:
autonomous systems and human-machine teams. Autonomous
systems are being employed to replace humans in hazardous
environments, in applications where reaction time is critical, or in
jobs where skilled human workers are scarce. The challenge of Al
for autonomous systems is to conduct tasks effectively and safely
in an open environment without direct human intervention for an
extended period of time. This primarily requires Al to be improved
along the first two dimensions in Figure 1, i.e. environment and
purpose. The second system class concerns a human-machine team
which exploits the complementary capabilities of humans and Al to
become more effective at conducting tasks while at the same time
assuring compliance with laws, ethics, and societal values. To
achieve this, Al needs to collaborate with other team members
(humans and machines) and this requires enhancements along the
final two dimensions in Figure 1, i.e. collaboration and
governance. The difference in focus for Al in these two system
classes is also illustrated by Figure 5 and Figure 8 with Al for
autonomous systems focusing on the interaction loop with the
environment and Al for human-machine teams concentrating on
the collaboration loops within the team.

4.1  Autonomous system

Figure 5 illustrates an autonomous system that employs a
combination of reasoning and optimization, a knowledge base,
machine learning, and a data base to support the Observe, Orient,



Decide, (OODA) loop that is needed to operate in an open world
[26]. Deductive reasoning and domain knowledge in the form of a
world model enables the autonomous system to interpret the
objective of the task that is specified by the user at a high
abstraction level. Knowledge of the external world and the
functional capabilities of the autonomous system is valuable for
planning an effective course of action and adaptation of the system
configuration in a complex dynamic environment. This use case of
hybrid Al is elaborated in section 4.1.1. Furthermore,
compositional reasoning helps to characterize unforeseen situations
in terms of symbols that a human operator understands [5]. In
addition, domain knowledge helps to partly solve the lack of
training data that is characteristic for an open world. For example,
hierarchical novelty detection using a taxonomy of objects could be
used to alleviate the problem of characterizing novel objects. This
approach, which uses the hybrid Al design pattern shown in Figure
3, is discussed in more detail in section 4.1.2. Another application
of this hybrid Al pattern is to restrict the output of machine
learning algorithms to labels that are valid in the current context.
For example, misinterpretation of traffic signs could be avoided by
restricting the output to official traffic signs.
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Figure 5. General purpose autonomous system operating in an
open environment enabled by hybrid Al.

4.1.1 Competence assessment

Al applied in an autonomous system must be able to conduct a
variety of tasks in an environment that may differ significantly
from the environment for which it was originally designed or
trained. In these situations, current Al methods are often unreliable
and make mistakes while the confidence level as estimated by the
Al itself is high. This happens not only for adversarial examples
that have been crafted to deliberately mislead the Al, but also for
naturally occurring situations [27]. To be able to operate safely in
complex dynamic environments and gain the trust of users, Al
must be able to reliably assess its own competencies with or
without assistance of a human operator [28].

Here we propose a hybrid Al method that uses an ontology as a
knowledge representation of its internal processes and
configuration to assess its competencies in the current
environment. Figure 6 shows the basic, domain independent
modelling element of the ontology that describes not only
processes in any system or environment but also the relation
between a process, its inputs and its outputs. Each process has a
specific performance and a health state. The performance indicates

how well the process is carrying out the current task in the current
situation. This is based on the quality of the input data and how
well the input data distribution matches the expected data
distribution. For processes that contain learning elements, the
world model is updated and keeps track of the conditions in which
the world model is valid according to the hybrid Al pattern in
figure 4. The health state indicates how ‘healthy’ a component is;
i.e. if the process is functioning perfectly the health state will be 1,
if it is malfunctioning the health state will be 0. The specification
of the inputs and outputs rely on the process. A model of the
competence of an entire Al-based system configuration that
contains multiple processes is composed from a hierarchy of the
basic modelling elements. The overall competence assessment for
the entire system configuration is based on an aggregation of the
performance of the individual processes.

config
managemt

membership-configuration

requiring

[input] input i i output [output]
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Figure 6. Main modelling element of a competence assessment

ontology. Purple squares are entities, blue ovals are attributes and
green diamonds are relations.

4.1.2  Hierarchical novelty detection

In an open world, novel objects will be encountered by an
autonomous system that have not been or rarely seen before.
Current machine learning techniques for object classification that
learn from lots of examples do not perform well in this case [29].
One way to address this problem is to use the fact that novel
objects almost invariably share some characteristics with objects
that have been seen before. These common characteristics can be
exploited by a hierarchical novelty detection method that uses a
task-specific taxonomy of object classes to avoid errors that can
lead to undesirable consequences [30]. In an object class
taxonomy, each known object class is a superclass of its children
classes and subclass of its parent class. The leaves in a taxonomy
represent the most specific object classes while the root represents
the most generic object class. The use of an object class taxonomy
as prior knowledge in a machine learning algorithm is an example
of the hybrid Al design pattern shown in Figure 2.

To achieve hierarchical novelty detection, a machine learning
algorithm is first trained in a supervised way by presenting it with a
data set of known objects and the associated hierarchy of labels in
the taxonomy from leaf to root. After being trained, the algorithm
assigns the most specific object class for known objects while for
novel objects the nearest superclass is assigned. To illustrate the
potential benefits of this approach for dilemmas that might be
faced by autonomous vehicles, Figure 7 shows an example of an
object class taxonomy. At the highest level in the taxonomy below
the root there are four object super classes (vehicle, pedestrian,



animal, and small obstacle). Objects that are detected by the
vehicle and assigned to different super classes may lead to very
different decisions and actions by the autonomous vehicle. For
example, the detection of a plastic bag in front of the car would
normally not cause the autonomous vehicle to brake, while the
detection of a pedestrian or animal should lead to an emergency
stop. A novel object such as a tree branch should be assigned to the
small obstacle superclass and lead to similar behaviour as for a
plastic bag. On the other hand, a novel object such as a cat should
not be assigned to the superclass small object but to the superclass
animal leading to an emergency stop if no evasive manoeuvre is
possible [31].
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Figure 7. Example of an object class taxonomy for an autonomous
vehicle. Known object classes are indicated as boxes with solid
blue shading and unknown classes as white shaded boxes.

4.2 Human-machine team

In human-machine teams, Al and human team members need to
interact on a regular basis to exploit the complementary skills and
capabilities of human and artificial intelligence in the execution of
a task. A prerequisite for effective and responsible team operations
is that the team members have a shared view of the objectives that
should be achieved and the capabilities and limitations of the team
members. In addition, the team members should be able to use each
other’s data and knowledge to learn from each other [32]. This
shared view and team learning ability is enabled by the exchange
of knowledge and data between the team members, see Figure 8.

Machine
Learning

Machine
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Figure 8. Human-machine team enabled by hybrid Al.

Domain knowledge represented by heuristics and physical,
biological or behavioural models can express how entities in the
world relate to each other and can predict how the environment
changes because of certain events and actions. A reasoning process
serves to transfer domain knowledge, which is a compressed form
of data and experience collected during many years of experience,
from one task to another. That is, knowledge offers a level of

abstraction above the concrete and granular details of a sensory
experience or observation, an abstraction that allows humans to
transfer what they learned in one place to a problem that they may
encounter somewhere else.

Another important aspect is that although there is a benefit in
cooperation by pooling skills and resources, laws and intellectual
property concerns may preclude sharing data that could be used to
conduct the task. For example, privacy laws impose restrictions on
insurance companies and hospitals to share patient data while the
combined data could be used to more effectively treat patients [33].
This requires a reasoning and optimisation process supervised by
humans that balances the need for data and knowledge sharing and
the need to know.

4.2.1  Hierarchical bias mitigation

The goal of fair decision making in a human-machine team is to
avoid unlawful biases and decisions in sensitive societal
applications [34]. For instance, a fair decision support system using
Al should not suggest lower wages to women or should not favour
specific ethnic groups in suggesting loans and insurance policy
schemes. One of the main challenges for fair decision support is
that if a historical data set contains biases and a machine learning
algorithm is trained to make accurate predictions on such data, then
the decisions made by humans based on these predictions will be
biased as well. An example of biased decision making is the
System for Risk Indication (SyRI) employed by the Dutch Ministry
of Social Affairs to predict the likelihood of an individual
committing benefits or tax fraud [2]. In February 2020, the Dutch
high court ruled against the use of this system because it violates
human rights. While details of SyRI have not been disclosed by the
Dutch government, it has become apparent that SyRI was used to
detect fraud only in disadvantaged neighbourhoods. This way of
working reinforces existing biases because fraud is only detected in
poor neighbourhoods.

One of the simplest methods to avoid unwanted biases is to
remove protected or sensitive attributes from the input data.
However, when applying machine learning to these data, biases
may be introduced through proxies of the protected attribute(s). For
example, the postal code could be used as a proxy of ethnicity by a
machine learning algorithm.

In this section, we introduce the concept of a hierarchical bias
mitigation algorithm to reduce bias from a historical dataset by
generating a transformed dataset that is still readable by humans.
The algorithm uses a knowledge representation in the form of a
taxonomy of the protected or sensitive attribute in which higher
abstraction levels of the attribute reduce the probability of biases
with respect to lower abstraction levels. with geographical location,
then we may find a bias with data points from Rotterdam West and
Rotterdam North. The hierarchical bias mitigation algorithm would
then set the geographical attributes of these data points to
Rotterdam. On the other hand, if the bias involves Rotterdam and
Amsterdam, we can set the geographical property to The
Netherlands, see Figure 9.

To be able to reduce the bias in the dataset, a machine learning
algorithm is trained to minimize a loss function that comprises
three parts. The first part is an inverted loss on the protected
attribute such as ethnicity. The better the algorithm can predict this
attribute from the unbiased dataset the higher the loss. The second
part of the loss function is the prediction loss that measures how



accurate the model can predict the attribute that is going to be used
for the unbiased dataset. The third part measures how close the
unbiased dataset is to the original dataset. This loss is used to make
sure that attributes that do not contribute a lot to the prediction and
do not contribute to the bias are still accurately represented in the
unbiased dataset.
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Figure 9. Geographical taxonomy for hierarchical bias mitigation.
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5 CONCLUSIONS

In this position paper, we have argued that current Al needs to
improve along four dimensions to become more trustworthy:
environment, purpose, collaboration, and governance. We have
also reasoned that hybrid Al which combines knowledge-based
methods, and data-driven machine learning can address the
challenges to improve Al along those dimensions. Some hybrid Al
design patterns in this position paper illustrate different ways to
combine knowledge-based and data-driven methods. To clarify the
potential benefits of hybrid Al we introduce two distinct system
classes that focus on different Al interactions: Al for autonomous
systems primarily interacts with the environment and Al for
human-machine teams mainly interacts with the team members.
We have described several hybrid Al uses cases that we are
currently exploring in our endeavour to make Al for autonomous
systems and human-machine teams more trustworthy. Detailed
descriptions and concrete results of those hybrid Al use cases will
be published in forthcoming technical papers.
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